English  邮箱登录
首页 学院概况 师资队伍 社科基地 学术刊物 学术信息 论坛会议 研究生教育 合作交流 培训教育 留学生 就业
公告栏 更多>> 
友情链接  
耶鲁大学
北京大学国家发展研究院
康奈尔大学
哈佛大学
普林斯顿大学
芝加哥大学
厦门大学经济学院
联系我们  
通讯地址:山东省济南市山大南路27号js9159路线检测
邮政邮编:250100
联系电话:0531-88364000 88364128
传 真:0531-88364981
电子信箱:cer@sdu.edu.cn
当前位置: 首页 >> 发表论文 >> 正文
G. Okten and A. Goncu: Generating low-discrepancy sequences from the normal distribution: Box-Muller or inverse transform?
发布时间:2010年12月03日 00:00   作者:admin   点击:[]

Generating low-discrepancy sequences from the normal distribution: Box-Muller or inverse transform?

G. Okten and A. Goncu

ForthcomingonMathematical and Computer Modelling

Accepted on November 4th, 2010

Abstract

Quasi-Monte Carlo simulation is a popular numerical method in applications, in particular, economics and finance. Since the normal distribution occurs frequently in economic and financial modeling, one often needs a method to transform low-discrepancy sequences from the uniform distribution to the normal distribution. Two well known methods used with pseudorandom numbers are the Box-Muller and the inverse transformation methods. Some researchers and financial engineers have claimed that it is incorrect to use the Box-Muller method with low-discrepancy sequences, and instead, the inverse transformation method should be used. In this paper we prove that the Box-Muller method can be used with low-discrepancy sequences, and discuss when its use could actually be advantageous. We also present numerical results that compare Box-Muller and inverse transformation methods.

上一条:A. Goncu: Pricing temperature-based weather contracts: an application to China 下一条:G. Okten, E. Salta and A. Goncu: On pricing discrete barrier options using conditional expectation and importance sampling Monte Carlo

关闭

 

版权所有:js9159路线检测 - amjs澳金沙门欢迎您(中心)
Copyright 2001-2010 http://www.placidferrer.com/